(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, x) → 0
minus(s(x), s(y)) → minus(x, y)
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, x, y) → gcd(minus(x, y), y)
if_gcd(false, x, y) → gcd(minus(y, x), x)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
gcd(0, z0) → z0
gcd(s(z0), 0) → s(z0)
gcd(s(z0), s(z1)) → if_gcd(le(z1, z0), s(z0), s(z1))
if_gcd(true, z0, z1) → gcd(minus(z0, z1), z1)
if_gcd(false, z0, z1) → gcd(minus(z1, z0), z0)
Tuples:
LE(0, z0) → c
LE(s(z0), 0) → c1
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(z0, 0) → c3
MINUS(0, z0) → c4
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(0, z0) → c6
GCD(s(z0), 0) → c7
GCD(s(z0), s(z1)) → c8(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, z0, z1) → c9(GCD(minus(z0, z1), z1), MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
S tuples:
LE(0, z0) → c
LE(s(z0), 0) → c1
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(z0, 0) → c3
MINUS(0, z0) → c4
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(0, z0) → c6
GCD(s(z0), 0) → c7
GCD(s(z0), s(z1)) → c8(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, z0, z1) → c9(GCD(minus(z0, z1), z1), MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
K tuples:none
Defined Rule Symbols:
le, minus, gcd, if_gcd
Defined Pair Symbols:
LE, MINUS, GCD, IF_GCD
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing nodes:
GCD(s(z0), 0) → c7
LE(0, z0) → c
MINUS(z0, 0) → c3
MINUS(0, z0) → c4
LE(s(z0), 0) → c1
GCD(0, z0) → c6
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
gcd(0, z0) → z0
gcd(s(z0), 0) → s(z0)
gcd(s(z0), s(z1)) → if_gcd(le(z1, z0), s(z0), s(z1))
if_gcd(true, z0, z1) → gcd(minus(z0, z1), z1)
if_gcd(false, z0, z1) → gcd(minus(z1, z0), z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c8(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, z0, z1) → c9(GCD(minus(z0, z1), z1), MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c8(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, z0, z1) → c9(GCD(minus(z0, z1), z1), MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
K tuples:none
Defined Rule Symbols:
le, minus, gcd, if_gcd
Defined Pair Symbols:
LE, MINUS, GCD, IF_GCD
Compound Symbols:
c2, c5, c8, c9, c10
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
gcd(0, z0) → z0
gcd(s(z0), 0) → s(z0)
gcd(s(z0), s(z1)) → if_gcd(le(z1, z0), s(z0), s(z1))
if_gcd(true, z0, z1) → gcd(minus(z0, z1), z1)
if_gcd(false, z0, z1) → gcd(minus(z1, z0), z0)
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c8(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, z0, z1) → c9(GCD(minus(z0, z1), z1), MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c8(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, z0, z1) → c9(GCD(minus(z0, z1), z1), MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
K tuples:none
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, GCD, IF_GCD
Compound Symbols:
c2, c5, c8, c9, c10
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
GCD(
s(
z0),
s(
z1)) →
c8(
IF_GCD(
le(
z1,
z0),
s(
z0),
s(
z1)),
LE(
z1,
z0)) by
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)), LE(0, z0))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))), LE(s(z0), 0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(true, z0, z1) → c9(GCD(minus(z0, z1), z1), MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)), LE(0, z0))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))), LE(s(z0), 0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(true, z0, z1) → c9(GCD(minus(z0, z1), z1), MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)), LE(0, z0))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))), LE(s(z0), 0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, IF_GCD, GCD
Compound Symbols:
c2, c5, c9, c10, c8
(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(true, z0, z1) → c9(GCD(minus(z0, z1), z1), MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(true, z0, z1) → c9(GCD(minus(z0, z1), z1), MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
K tuples:none
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, IF_GCD, GCD
Compound Symbols:
c2, c5, c9, c10, c8, c8
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF_GCD(
true,
z0,
z1) →
c9(
GCD(
minus(
z0,
z1),
z1),
MINUS(
z0,
z1)) by
IF_GCD(true, z0, 0) → c9(GCD(z0, 0), MINUS(z0, 0))
IF_GCD(true, 0, z0) → c9(GCD(0, z0), MINUS(0, z0))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, z0, 0) → c9(GCD(z0, 0), MINUS(z0, 0))
IF_GCD(true, 0, z0) → c9(GCD(0, z0), MINUS(0, z0))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, z0, 0) → c9(GCD(z0, 0), MINUS(z0, 0))
IF_GCD(true, 0, z0) → c9(GCD(0, z0), MINUS(0, z0))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, IF_GCD, GCD
Compound Symbols:
c2, c5, c10, c8, c8, c9
(13) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
IF_GCD(true, z0, 0) → c9(GCD(z0, 0), MINUS(z0, 0))
IF_GCD(true, 0, z0) → c9(GCD(0, z0), MINUS(0, z0))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, IF_GCD, GCD
Compound Symbols:
c2, c5, c10, c8, c8, c9
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(GCD(x1, x2)) = x1 + x2
POL(IF_GCD(x1, x2, x3)) = x2 + x3
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
K tuples:
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, IF_GCD, GCD
Compound Symbols:
c2, c5, c10, c8, c8, c9
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
We considered the (Usable) Rules:
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(GCD(x1, x2)) = [1] + [2]x1 + [2]x2
POL(IF_GCD(x1, x2, x3)) = x1 + [2]x2 + [2]x3
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = [1]
POL(le(x1, x2)) = [1]
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(false, z0, z1) → c10(GCD(minus(z1, z0), z0), MINUS(z1, z0))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
K tuples:
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, IF_GCD, GCD
Compound Symbols:
c2, c5, c10, c8, c8, c9
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF_GCD(
false,
z0,
z1) →
c10(
GCD(
minus(
z1,
z0),
z0),
MINUS(
z1,
z0)) by
IF_GCD(false, 0, z0) → c10(GCD(z0, 0), MINUS(z0, 0))
IF_GCD(false, z0, 0) → c10(GCD(0, z0), MINUS(0, z0))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF_GCD(false, 0, z0) → c10(GCD(z0, 0), MINUS(z0, 0))
IF_GCD(false, z0, 0) → c10(GCD(0, z0), MINUS(0, z0))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(false, 0, z0) → c10(GCD(z0, 0), MINUS(z0, 0))
IF_GCD(false, z0, 0) → c10(GCD(0, z0), MINUS(0, z0))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, GCD, IF_GCD
Compound Symbols:
c2, c5, c8, c8, c9, c10
(21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
IF_GCD(false, z0, 0) → c10(GCD(0, z0), MINUS(0, z0))
IF_GCD(false, 0, z0) → c10(GCD(z0, 0), MINUS(z0, 0))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, GCD, IF_GCD
Compound Symbols:
c2, c5, c8, c8, c9, c10
(23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(GCD(x1, x2)) = [1] + x1 + x2
POL(IF_GCD(x1, x2, x3)) = x2 + x3
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, GCD, IF_GCD
Compound Symbols:
c2, c5, c8, c8, c9, c10
(25) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
K tuples:
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, GCD, IF_GCD
Compound Symbols:
c2, c5, c8, c8, c9, c10
(27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LE(s(z0), s(z1)) → c2(LE(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(GCD(x1, x2)) = x2 + [2]x1·x2
POL(IF_GCD(x1, x2, x3)) = [2] + [2]x2·x3
POL(LE(x1, x2)) = x1
POL(MINUS(x1, x2)) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
K tuples:
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
LE(s(z0), s(z1)) → c2(LE(z0, z1))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, GCD, IF_GCD
Compound Symbols:
c2, c5, c8, c8, c9, c10
(29) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(GCD(x1, x2)) = x1·x2
POL(IF_GCD(x1, x2, x3)) = x2·x3
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = x2
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(le(x1, x2)) = [2] + [2]x1 + [2]x22 + x1·x2 + x12
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:none
K tuples:
IF_GCD(true, s(z0), s(z1)) → c9(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
GCD(s(z0), s(0)) → c8(IF_GCD(true, s(z0), s(0)))
GCD(s(s(z1)), s(s(z0))) → c8(IF_GCD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
GCD(s(0), s(s(z0))) → c8(IF_GCD(false, s(0), s(s(z0))))
IF_GCD(false, s(z1), s(z0)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, GCD, IF_GCD
Compound Symbols:
c2, c5, c8, c8, c9, c10
(31) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(32) BOUNDS(1, 1)